Wednesday, 10 August 2011

Squaring 3 digit numbers ending in 1


There is a short cut method for squaring 3 digit numbers ending in 1 rather than going for normal multiplication. If you can practice a bit with this method then you can square such numbers in mind itself. Let me explain the method with an example.

Example : 341 2

Step 1 : square the last digit 1 and put it in the last places of the result
 
       *****1
Step 2 : The second last digit can be found by doubling the tenth place digit of the number,
           here 4 ( 4 X 2 = 8).
      
       ****81

Step 3 : Square the tens digit and add the double of 100th digit to it
         4 2 + ( 2 X 3 ) = 16 + 6 = 22
         put 2 in the result and carry 2 forward.
        
         ****281

step 4 : multiply the first two digits of the number to be squared and double it i.e
      
      3 x 4  = 12 ; 12 x 2 = 24
       
       Now add the  carry forward  2      
        24  + 2 = 26
      
       Put 6 in the result and carry forward 2
    
       **6281
         
Step 4 : Square the 100th position digit and add carry forward and put it to the result
 here 3 2 = 9; 9 + 2 = 11
        116281
 341 2 = 116281   

Example : 761 2

Step 1 : square the last digit 1 and put it in the last places of the result
 
       *****1
Step 2 : The second last digit can be found by doubling the tenth place digit of the number,
           here 6 ( 6 X 2 = 12). Put 2 in the result and carry the 1 forward
      
       ****21

Step 3 : Square the tens digit and add the double of 100th digit to it
         6 2 + ( 2 X 7 ) = 36 + 14 = 50
        add the carry forward
         50 + 1 = 51
         put 1 in the result and carry 5 forward.
        
         ****121

step 4 : multiply the first two digits of the number to be squared and double it i.e
      
      7 x 6  = 42 ; 42 x 2 = 84
       
       Now add the  carry forward  5      
        84  + 5 = 89      
       Put 9 in the result and carry forward 8    
       **9121
         
Step 4 : Square the 100th position digit and add carry forward and put it to the result
 here 7 2 = 49; 49 + 8 = 57
        579121

 761 2 = 579121

1 comment:

  1. If one can make sure that the squares of *most* 2 digit numbers is already known, then :

    square of 341 is (341)^ = 1156 01
    6 8
    ---------------
    = 116281

    ReplyDelete